UNCLASSIFIED ### AD NUMBER AD067748 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; JUL 1955. Other requests shall be referred to Air Force Office of Scientific Research, Arlington, VA 22203-1997. **AUTHORITY** AFOSR ltr dtd 24 May 1966 ## Armed Services Technical Information Agency Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0 H10 Because of our limited supply, you are requested to RETURN THIS COPY WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated. NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOW ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHER VISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATER TED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. # UNCLASSIFIED #### DISCLAIMER NOTICE THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. # AD NO.67748 ASTIA FILE COPY TN-9 Transition-State Theory of the Linear Rate of Decomposition of Ammonium Perchlorate νď FC Robert D. Schultz and Albert O. Dekker Aerojet-General Corporation Azusa, California * * * * #### Abstract The experimental data of Bircumshaw and Newman are analyzed in terms of a linear rate of progression of the interface between residue and undecomposed crystal. Linear decomposition rates corresponding to given temperatures are derived directly from the maximum rate portions of the sigmoid curves of product pressure versus time. It is proposed that in the temperature range 220°C to 280°C, the decom- This work was supported under Contract AF18(600)-1026 by the United States Air Force, through the Office of Scientific Research of the Air Research and Development Command OSR-TN-55-162. position interface travels exclusively through the disordered material between the mosaic blocks of the crystal and does not penetrate the interior of these blocks. Absolute rate treatments in the manner of Laidler, Glasstone, and Eyring are presented for each of the two crystal forms (orthorhombic and cubic). These treatments are similar to those proposed for the sublimation of ionic solids and the vaporisation of solid ammonium chloride, respectively. #### Introduction Pircumshaw and Nowman¹ have recently summarized the results of an ¹ L. L. Bircumshaw and R. H. Newman, Proc. Roy. Soc. (London), A227, 115-132, 228-241 (1954). exceptionally detailed investigation of the kinetics of decomposition of ammonium perchlorate. The present writers sometime ago obtained a report² of well over a hundred pages containing the excellent original ² L. L. Bircumshaw and B. H. Newman, Interim Report, March, 1951. data which facilitated the following theoretical analysis. The present paper is based upon a discussion³ originally presented in 1952 and re ³ R. D. Schults and A. O. Dekker, "The Kinetics of Decomposition of Ammonium Perchlorate" presented at the 122nd National Neeting, American Chemical Society, Atlantic City, New York, September, 1952. cently modified in the light of recent studies on the linear vapori- sation rate of ammonium chloride 1,5 and on the sublimation rates of molecular 6 and ionic crystals. By a series of excellent photomicrographs on individual crystals of ammonium perchlorate, Birousshaw and Newson¹ demonstrated that the slow decomposition at 230°C proceeds by the formation of opaque spots (1.0.1) model) on the crystal surface. These spots then grow in size and eventually coalesce to form a continuous opaque region whose boundary with the transparent region was observed to move uniformly inward toward the center of the crystal. Then the boundary reaches the center of the crystal, decomposition ceases, leaving a porous pseudomorph which is still pure assentium perchlorate but which has a density only 70% of that of the original crystal. Rates of Solids. Part I," in the Fifth International Combustion Symposium (1954), Reinhold Publishing Company, New York, (1955). ⁵ R. D. Schults and A. O. Dokker, to be published. OSR-TN-55-141. ⁶ R. D. Schults and A. O. Dekker, J. Chem. Phys. in press. OSR-TN-54-367. ⁷ R. D. Schults and A. O. Dekker, to be published. OSR-TN-55-138 In the following discussion, it is shown that a single consistent treatment of the kinetic data can be made in terms of the linear rate of progression of the interface between partially decomposed and undecomposed crystal. A modification of a treatment by Nott⁸ is used to analyse the acceleratory (or nucleation) period, and a modification of a treatment by Topley and Hume⁹ is used to analyse the deceleratory (or post-coalescence) period. An explanation for the observed cessation of the reaction at 30% completion is proposed on the basis of the concept of mosaic structure in crystals. The experimental linear rates derived by this analysis provide a basis for a transition-state absolute rate treatment in the manner of Glasstone, Laidler, and Syring. These latter calculations suggest that the intermosaic material of the orthorhombic crystal decomposes below 250°C via a primary rate-controlling step requiring the attainment of nearly free rotation of the perchlorate ion. On the other hand, the intermosaic material of the cubic crystal appears to decompose above 250°C via a rate-controlling step which involves description of a loosely bound NH3*HGIO, complex from its physically adsorbed state at the decomposition interface. ⁸ N. F. Mott, Proc. Roy. Soc. (London), A172, 325 (1939). ⁹ B. Topley and J. Hume, Proc. Roy. Soc. (London), Al20, 211 (1929). #### Theory of the Muclostion Process in the Acceleratory Period Rircumshaw and Newman^{1,2} have suggested that the formation of centers of decomposition on the crystal surface may be associated with the formation of free adsorbed perchloric acid. To support this hypothesis, they have demonstrated that the induction period for decomposition is considerably shortened by crystallizing some of the salt with perchloric acid as a 2% impurity. Moreover, they find that the induction period is considerably lengthened by a small pressure of amonia over the salt, presumably caused by the neutralization of adsorbed perchloric acid. Accordingly, the following mechanism is assumed for the nucleation process: Let da/dt be the rate of escape of NH₃ (g) from the surface of the crystal in molecules sec⁻¹ cm⁻². As a first approximation, the back reactions (lb) and (ld) are neglected and reaction (le) is assumed to be rate controlling, so that $$\frac{ds}{dt} = k_0 \left(NH_3 : RClO_{i_1} \right)_{ad} = K_a$$ (2) where k_{α} is the specific rate constant for reaction (1c) and where K_{α} is a combination constant. (The alternate assumption that reaction (la) is rate-controlling will not affect the mathematical form of the decomposition pressure-time relationship (l3) below.) Assume in this first approximation that the rate of escape of perchloric acid from the surface is negligible. Assume also that the time required to attain temperature equilibrium is negligible compared to the duration of the nucleation period. At time t after start of heating, the concentration of perchloric acid in the surface is $$(HCLO_h)_{ad} = s = K_a t$$ (3) provided that no adsorbed HClO₁ or NH₃ is present prior to t = 0. A nucleus will be considered to be in existence when a certain number, j, of HClO₁ (ad) molecules have migrated to a potential nucleus site (i.e., surface discontinuity) and have decomposed to leave a surface hole. The mobility of the adsorbed perchloric acid could be the result of a surface lattice migration process of a type discussed by !ac@onald. For 10 J. Y. MacConald, Trans. Far. Soc., 17, 560-563 (1951). NH, CLO, the migration process might be visualised as The formation of an empty space in the surface lattice caused by a decomposition reaction of j molecules of HClO₁ at a potential nucleus site should loosen the lattice restraints on the immediately adjacent ions, thereby permitting them to enter decomposition reactions. (This situation is comparable to the calcium carbonate decomposition discussed by Language. The latter used the phase rule to show that the 11 I. Langmuir, J. Am. Chem. Soc., 38, 2263-2267 (1916). lattice vacancy left by the removal of a CO₂ group weakens the bonds by which adjacent groups are held.) The rate of nuclei formation per unit area of crystal is then $$\frac{dn}{dt} = k_n r s^{j} = k_n r K_s^{j+j}$$ (5) where γ is the number of potential nucleus sites per unit area and k_n is the specific rate constant of the nucleation process. It has been observed in many crystal decompositions that the radial growth rate (dr/dt) of a nucleus is constant under isothermal conditions and varies with temperature T according to the equation $$B = dr/dt = B_0 \exp(-R/RT)$$ (6) At the time \mathcal{T}_{s} the radius of a nucleus born at time t is $$\mathbf{r} = \mathbf{B} \left(\mathbf{\tau} - \mathbf{t} \right) \tag{7}$$ Both T and t are measured from the commencement of heating. The volume of a hemispherical nucleus is $$V = (2/3) \pi B^3 (\tau - t)^3$$ (8) and the total volume $V_{\mathbf{n}}$ of all n nuclei existing at anytime ? before coalescence (i.e., before appreciable interference of decomposition somes occurs) is $$V_n = \int_0^n (2/3) \pi B^3 (\tau - t)^3 dn$$ (9) where dn is given by equation (5). Hence $$V_{n} = \int_{0}^{\gamma} (2/3) \, \mathcal{T} B^{3} k_{n} \gamma \, K_{n}^{j} \, t^{j} \, (\gamma - t)^{3} dt \qquad (10)$$ Integration gives $$v_n = \frac{4\pi B^3 k_n r \kappa_n^3}{(3+1)(3+2)(3+3)(3+4)} \tau^{3+4}$$ (11) If it is assumed that perchloric acid decomposes by a bimolecular reaction at a potential nucleus site, j = 2, so that $$v_n = (\pi B^3 k_n \gamma K_2^2/90) \tau^6$$ (12) In the absence of secondary reactions at time (t), the pressure (p) of decomposition products above the salt is proportional to V_n , so that $$p = (c \pi B^3 k_B r \kappa_B^2 / 90) T^6$$ (13) where C is a constant of proportionality. Equation (13) is identical in form to the power expression, $p = kt^{X}$ (where $x = 6.2 \pm 0.5$) which Bircumshaw and Newman² found to hold for the acceleratory period at 220 - 275°C. Secondary reactions in the gaseous decomposition products which involve volume changes will not affect the experimental value of the exponent x provided that the final decomposition is attained in a time which is either very small or very large compared to the duration of the acceleratory period. The above calculations suggest that some kind of bimolecular reaction is responsible for the formation of a nucleus but it is by no means certain that the reaction involves perchloric acid. An alternative assumption that a nucleus is formed by two holes (or even two charged particles) which migrate through the crystal lattice and coelecce at a discontinuity in the crystal would lead to a mathematical expression of the same form as equation (13). (See H. F. Nott⁸.) #### The Maximum Rate Poriod Once coalescence of the growing nuclei has occurred so that the surface is completely covered by a layer of residue, equation (13) is no longer valid. At this time, the reaction interfaces no longer increase in area. Instead, the resulting single interface decreases in area as it progresses toward the center of the crystal. Let the shape of a given crystal at coalescence time ty be approximated as a sphere or radius ry. The volume Vy of undecomposed crystal inside this sphere at time ty is $$V_{y} = (h/3)\pi r_{y}^{3} \tag{1h}$$ At the later time t_s the volume $V_{\mathbf{t}}$ of undecomposed crystal is $$V_{t} = (h/3)\pi \left[\mathbf{r}_{y} - B(t - t_{y}) \right]^{3}$$ (15) Differentiation gives $$dv_{t}/dt = -4\pi B \left[r_{y} - B(t - t_{y}) \right]^{2}$$ (16) The rate of increase of decomposition product pressure dp/dt is proportional to the rate of volume decrease $-dV_{\rm p}/dt$ and to Q the number of crystals assumed uniform in size and shape, so that $$dp/dt = LTQEG \left[r_y - R(t - t_y) \right]^2$$ (17) where G is a proportionality constant. The maximum rate occurs at the time $t=t_y$ so that $$\left(\frac{dp}{dt}\right)_{y} = 4\pi \cos r_{y}^{2} \tag{18}$$ The number of crystals Q in a fixed initial weight % of uniform $\text{NH}_{i_l}\text{ClO}_{i_l}$ crystals (assumed spherical in shape) is $$Q = \frac{3\pi}{4\pi r_0^3 \rho} \tag{19}$$ where r_0 is the initial crystal radius and P its density. Insertion of (19) into (18) gives $$(dp/dt)_y = 3 \frac{780}{6} \frac{r^2}{r^3}$$ (20) Let the difference between the initial radius of the crystal and the radius of the spherical reaction interface at coalescence be & so that $$\mathbf{r}_{\mathbf{y}} = \mathbf{r}_{\mathbf{0}} - \mathbf{c}^{\prime} \tag{21}$$ and $$(dp/dt)_y \propto (r_0 - \delta)^2 / r_0^3 \propto (r_0^2 - 2r_0 \delta + \delta^2) / r_0^3$$ (22) $\propto = proportional to$ For large crystels, & is small compared to r so that $$(dp/dt)_{y} \sim 1/r_{0}$$ (23) Thus, the maximum rate for a given mass of large $\mathrm{NH}_{l_1}\mathrm{GlO}_{l_2}$ crystals should vary inversely as the initial crystal radius. Indeed, this is nearly the relationship observed by Bircumshaw and Newman² for crystals greater than 0.004 inches in diameter. Below this size, the maximum rate was found to decrease with decrease in diameter. This results from the fact that coalescence occurs at greater percentages of decomposition for the smaller particles (i.e., δ is no longer small compared to \mathbf{r}_0). Mampel 12 reached a similar conclusion about the effect of decreased particle size on the rate of solid decomposition. ¹² K. L. Mampel, Z. Physik. Chem., A187, 43-57, 235-249 (1940). For a given batch of uniform crystals, the point of inflection of the commonly observed signoid decomposition pressure-time curves correspond approximately to t_y , the time of coalescence of the nuclei on the surface of the crystal. At time $t=t_y$ the decomposition rate, in terms of fraction of original crystal volume V_0 , is from equation (16) $$\left(\frac{dV_{t}/V_{o}}{dt}\right)_{y} = -3B \frac{r_{y}^{2}}{r_{o}^{3}}$$ (2h) But V_0 is proportional to $p_{\mathbf{f}^0}$ the final decomposition pressure, so that (24) becomes $$\left(\frac{dp/p_f}{dt}\right)_y = 3B \frac{r_y^2}{r_0^3} \tag{25}$$ The ratio of the volume ∇_y of undecomposed crystal to the original volume V_α is at time t_y $$\frac{V_{y}}{V_{0}} = \frac{r_{y}^{3}}{r_{0}^{3}} = \frac{p_{f} - p_{y}}{p_{f}}$$ (26) The radius of the decomposition interface at time $\mathbf{t}_{\mathbf{y}}$ is, therefore, $$\mathbf{r}_{y} = \mathbf{r}_{o} (\mathbf{p}_{f} - \mathbf{p}_{y})^{1/3} \mathbf{p}_{f}^{-1/3}$$ (27) The maximum rate of linear progression of the decomposition interface, $B = dr_y/dt$, at time t_y is $$B = \frac{r_0 (dp/dt)_y}{3p_e^{1/3} (p_e - p_y)^{2/3}}$$ cm sec⁻¹ (28) where r_o = initial crystal radius (dp/dt)_y = slope at the point of inflection of sigmoid decomposition product pressure - time curve mm Hg sec -1 p = decomposition product pressure at me Hg pf = final product pressure (assuming no change in volume of system during run) me Hg By means of equation (28), experimental values of B (plotted in Figure 1 as \log_{10} B versus 1/T) were derived directly from the signoid p-t curves of the original Bircumshaw and Newman data² using their estimated mean value of $r_0 = 1.98 \times 10^{-2}$ cm. Below 513°K the linear decomposition rate of the intermosaic material of the orthorhombic NH₁ClO₁ crystal is given by $^{1}_{\text{HH}_{1}\text{CLO}_{1}}$ (orthorhombic) = $1.5 \times 10^{8} \exp{(-31.600/\text{RT})}$ cm sec⁻¹ (29) At 513°K, the crystal of NH_LCLO_L assumes the cubic NaCl type lattice. Above this temperature, the linear decomposition rate of the intermosaic material of the cubic NH_LCLO_L crystal is $$H_{NH_LCLO_L}$$ (cubic) = 2.4 x 10¹ exp (-16,200/RT) cm sec⁻¹ (30) It is of interest to compare equation (29) with an equation recently estimated for the maximum linear rate of advance in vacuo of the decomposition interface between CaCO₂ and CaO $$B_{\text{Ca.OR}_{3} \circ \text{Ca.O}} = 7.7 \times 10^7 \text{ exp } (-37,600/RT)$$ cm sec⁻¹ (31) It is also of interest to compare equation (30) with the equation for the linear rate of vaporization of ammonium chloride obtained by an analysis of the experimental data of H. Spingler. $$B_{\text{NH}_3,\text{CL}} = 1.2 \times 10^2 \text{ exp } (-1.3,500/\text{RT})$$ on \sec^{-1} (32) ¹³ H. Spingler, Z. Physik. Chem., <u>B52</u>, 90-106 (1942). #### The Deceleratory Period It follows from the previous mathematical analysis that the equation of the deceleratory portion of the sigmoid p - t curve is $$\frac{p_{y} - p}{p_{y}} = \frac{\left[r_{y} - B(t - t_{y})\right]^{3}}{r_{0}^{3}}$$ (33) where r_y is given by equation (27). Figures 2, 3, and 4 compare the deceleratory curves derived by equation (33) with the experimental curves. At 215°C, the agreement is excellent but becomes progressively poor with increasing temperature. The discrepancy at higher temperatures may be the result of an increase in the vaporization rate of the salt without oxidization-reduction reactions in the gas phase or perhaps may be the result of an impedance or hindering effect of the layer of residue on the escape of gaseous products from the decomposition interface. #### The Thermodynamics of the Simple Dissociation Process An enthalpy balance for the dissociation of orthorhombic amonium perchlorate to gaseous amonia and perchloric acid may be written as | | WH CTO! | | MH3 | + | HCTO ^{[†} | + . | heat of reaction | (34) | |---|--|----------|----------|----|--------------------|------------|------------------------|-------| | State | (orthornomotory (orystal) | ibic) | (tas) | | (gas) | | | | | Kcel
kcel
kcel | ^о к) – 69 . l | . | -11.0 | | -2,3 | | - 56 ₀ 0 | | | Referenc | e 11 | | J | (0 | alculated) | | (By Differ | ence) | | 1h National Bureau of Standards, Circular 500 (1952). | | | | | | | | | A value of 8.8 kcal g-mole⁻¹ for the enthalpy of vaporisation of anhydrous perchloric acid was estimated from vapor pressure data¹⁵ by was added to the -ll-1 koal g-mole⁻¹ heat of formation of HClO_k (liq) (Reference lk) to obtain the estimated value $\triangle H_{\chi}^{O}$ (296°K) HClO_k (gas) \Longrightarrow -2.3 koal g-mole⁻¹. Reaction (3k), as written, is endothermic to the extent of about 56 koal g-mole⁻¹. This value is somewhat uncertain J. W. Wellor, "Comprehensive Treatise on Inorganic and Theoretical Chemistry," Longmans, Green and Company, (London), Vol. II, p. 377. because the heat of aqueous solution of HClO_{li} (liq) is not known accurately. Since the endothermicity of the simple dissociation process 16 C. F. Goodeve and A. E. L. Marsh, J. Chem. Soc., 1516 (1937). (3h) is much higher than the observed activation energies for the vaporization process, it follows that the latter must occur in stages rather than as a single step. #### The Nature of the Residue Carner and Hailes 17 have suggested that, in certain cases, solid 17 W. E. Carner and H. R. Hailes, Proc. Roy. Soc. (London), Al39, 576-595 (1933). decomposition might proceed preferentially along the boundaries of the mosaic blocks comprising a crystal. If the decomposition paths at 215 to 280°C travel exclusively through the strained intermosaic lattice in NH₁ClO₁ crystals and do not penetrate the interior of the mosaic blocks, the formation of a residue stable at these temperatures is understandable. The minimum size of the mosaic blocks in ammonium perchlorate may be estimated on the assumption that the thickness of the strained transition lattice is about equal to the side of a unit cell of the cubic lattice. If the residue consists mainly of the original mosaic blocks with the intermosaic material removed, it follows that Mass residue Mass original crystal = $$\begin{bmatrix} D \\ D+d \end{bmatrix}$$ = 0.7 (35) where D is the side dimension of the mosaic block d is the thickness of the intermosaic layer 0.7 is the fraction of the original mass remaining after cessation of decomposition. Setting d equal to 7.64 A, the side dimension of the unit cell in cubic $NH_{L}(\Omega O_{L})$ (Reference 18), gives a minimum average value of about 52 A for 18 K. Herrmann and W. Illge, Z. Krist, 75, 41-66 (1931). the side dimension of a mosaic block or about 69 A for the spacing of successive intermosaic layers. ## Transition State Decomposition Rate Theory for Intermosaic Cubic NH_LCLO_L Assume that the final stages of the mechanism of decomposition of the intermosaic material in the cubic form of associum perchlorate is Reaction Intermediate Irreversible Oxidation-Reduction where S_2 is a dual adsorption site and where the reaction intermediate is a loose NH₃: HClO₁ complex which is physically adsorbed at the decomposition interface. Reactions (36a) and (36b) are similar to those assumed in a recently revised absolute rate treatment⁵ of the ammonium chloride decomposition NH₁ Cl(s) \rightarrow NH₃(g) + HCl(g). A possibility exists, therefore, of analyzing the reverse reaction (36b) by a straightforward application of the absolute rate treatment formulated by Laidler, Classtone, and Eyring¹⁹ for a bimolecular surface reaction proceeding by Langmuir-Hinshelwood mechanisms. By analogy with the treatment for MigCl, the maximum exchange rate, reaction (36b), should be equal to the maximum forward rate of reaction (36a). Assuming the latter to be rate-controlling, the maximum decomposition rate of the See K. J. Laidler, "The Absolute Rates of Surface Reactions" in Catalysis, Vol. I, Part 1, 195-243 (1954); P. H. Emmet, editor. Reinhold Publishing Co., New York. See particularly pp. 214-217. intermosaic material of the cubic form of ammonium perchlorate should correspond to the equation $$\frac{-d(NH_{L}CLO_{L})}{dt} = \left[NH_{3}\right]_{g} \left[HCL\right]_{g} C_{S_{2}} \frac{kT}{h} \frac{F^{*}}{F_{NH_{3(g)}}^{*}F_{HCL(g)}^{*}S_{2}} e^{-E_{0}/RT}$$ (38) ion-pairs where -d(NH_LCLO_L)/dt = the decomposition rate per unit area of exposed surface of intermosaic ion-pairs material cm⁻² sec⁻¹ NH3 8 = steady state gas phase concentration of ammonia in contact with the reaction interface molecules cm⁻³ HCTO F steady state gas phase concentration of perchloric acid in contact with the reaction interface molecules cm⁻³ C^{2</sub>S} = concentration of bare dual adsorption sites __4 r# = partition function of activated complex over all degrees of freedom except the vibrational mode included in kT/h Final site = partition function of ammonia per unit volume of gas phase = partition function of perchloric acid per unit volume of gas phases fs_ = partition function of a bare dual adsorption site = activation energy of surface reaction calories g-mole-1 kT/h = Eyring frequency for passage over By a procedure nearly identical to that used for ammonium chloride⁵ equation (38) may be simplified to potential energy barrier $$B_{\text{NH}_{\underline{l}}\text{ClO}_{\underline{l}}\text{ (cubic)}} = \left(\frac{M}{\sqrt{M}}\right)^{1/3} \frac{kT}{T} \frac{f^{*} \text{ (trans)}}{f(\sqrt{MH}_{3})^{T}(\sqrt{HClO}_{\underline{l}})} e^{-\frac{1}{2}o^{+}E_{\text{NH}_{3}}^{+}E_{\text{HClO}_{\underline{l}}}})^{/RT}$$ (39) #### where M/h = Tyring transition-state frequency for passage over a potential energy barrier sec⁻¹ method = formula weight of NH₁ClO₁ gg-mole⁻¹ density of NH₁ClO₁ (oubic) = 1.95 g cm⁻³ molecules g-mole⁻¹ f (trans) = partition function for a one-dimensional translation motion of the center of gravity of the complex in the plane of the crystal surface. As an approximation f^* (trans) \longrightarrow 1 = single mode vibrational partition function of ま(2) the form [1-exp(-h \(\nu/kT)\)]-1. As an approximation f(v) = kT/h frequencies for translational oscillation of physically adsorbed amnonia and hydrogen PHOLO, chloride in the plane of the adsorbed layer at the decomposition interface calories g-mole activation energy for surface reaction Fo calories g-mole nergy of adsorption of emonia calories g-mole EHCIO) energy of adsorption of perchloric acid Implicit in equation (39) is the assumption that the rotational oscillation of physically adsorbed $HClO_{ij}$ is nearly free gas—type rotation. The frequencies ν_{Rij} and $\nu_{HClO_{ij}}$ may be estimated in the manner of Hill²⁰ ²⁰ T. L. Hill, J. Chem. Phys., 16, 181-199 (1948). #### and Prenan and Hill 21 by use of the equation 21 J. W. Orenan and T. L. Hill, J. Chem. Phys., 17, 775-781 (1949). sec -1 (39) $V = (v_{\text{plas}}^2)^{1/2} = 1.025 \times 10^{13} (v_{\text{plas}}^2)^{1/2}$ where $V = V_y = T_y$ = translational oscillation frequency in the x or y directions in the plane of the physically adsorbed layer = maximum potential energy barrier to translation in x or y direction = mass of adsorbed molecule = distance between potential minima along x or y axis of surface lattice (assumed simple cubic) koal g-mole-1 = same as vo except for unit g g-mole-l malocular weight of adsorbed molecule = same as a except for unit ${\rm Hill}^{20}$ has estimated the potential barrier V_0 to be about 0.3 = 1.0 koal g-mole. If ${\rm HGlO}_L$ is adsorbed preferentially on a ${\rm HH}_L^+$ ion and MH_3 is adsorbed preferentially on a ClO_{ll}^m ion, the distance S should be about equal to the 7.6 l_l A side dimension of the unit cell in cubic $MH_{ll}ClO_{ll}^m$. Thus, the estimated frequencies are $$v_{\rm NH_3} = 1.8 \text{ to } 3.3 \times 10^{11}$$ sec⁻¹ (h0) $$\nu_{\rm HCLO_{li}} \simeq 0.7 \text{ to } 1.3 \times 10^{11}$$ sec⁻¹ (lil) As in the treatment for ammonium chloride FHCLO_L $$\simeq$$ \triangle H_{eg} HClo_L - RT_{eg} \simeq 10,700 calories g-mole⁻¹ (141) where $\triangle H_{\text{og}}$ signifies an enthalpy of sublimation measured at the temperature T_{og} . Therefore, the theoretical value of $B_{\text{NH}_{\downarrow}}\text{Cl}\Omega_{\downarrow}$ (cubic) $T_{\text{average}} = 532^{\circ}\text{K}$ is between $$B_{\text{NH}_{\parallel}\text{ClO}_{\parallel}\text{(cubic)}} = 5.5 \times 10^{1} \text{ exp (-17,800/RT)} \qquad \text{on sec}^{-1} \text{ (U5)}$$ Theory (V₀ assumed to be 0.3 kcal g-mole⁻¹) and $$B_{\text{NH}_{\downarrow}\text{ClO}_{\downarrow}\text{(cubic)}} = 1.8 \times 10^2 \text{ exp (-19,200/RT)} \qquad \text{cm sec}^{-1} \text{ (l/s)}$$ Theory (V₀ assumed to be 1.0 kcal g-mole⁻¹) in fair agreement with the experimentally derived value $$B_{\text{HH}_{1}\text{CLO}_{1}\text{(cubic)}} = 2.4 \times 10^{1} \text{ exp } (-16,200/RT)$$ cm sec⁻¹ (47) Experiment Use of energies of liquefaction instead of energies of sublimation to approximate E_{NH3} and E_{HClO₁} would have given an activation energy of 13,900 to 15,500 calories g-mole⁻¹ also in fair agreement with the experimental value. In these calculations the enthalpies of sublimation and liquefaction of amonia were taken from a compilation by the U.S. Bureau of Standards.²² The enthalpy of fusion of perchloric acid was estimated to be about 2.5 kcal g-mole⁻¹ by comparison with mitric, sulfuric, and phosphoric acid. The enthalpy of vaporisation of perchloric acid was estimated above to be 8.8 kcal g-mole⁻¹ from vapor pressure data at 16 and 39°C. ²² U. S. Bureau of Standards, Circular 500 (1952). #### Transition-State Decomposition Rate Theory for Intermosaic Orthorhombic NH₄ClO₄ For the linear decomposition of the intermosaic material in orthorhombic NH, ClO, the experimentally derived pre-exponential factor of 1.5×10^8 cm sec⁻¹ is about the same as for sublimation of simple ionic crystals and for the decomposition of calcium carbonate. 7 In these cases, the chief statistical difference between the initial and activated states appears to be that rotation or nearly free rotation is possible only in the activated state. Accordingly, it will be assumed that the formation of the activated complex for the decomposition of intermosaic orthorhombic $\mathrm{NH}_{h}\mathrm{GlO}_{h}$ requires the attainment of an almost free rotational motion of the CLO, ion at the decomposition interface. A reasonable estimate of the initial state torsional oscillation frequency of the ClO_h^m ion is about 7.5 x 10^{12} sec⁻¹ corresponding to a characteristic temperature $\theta = h V/k = 360^{\circ} K_{\bullet}$. It will be assumed, in accordance with a suggestion by Birowshaw and Newman. 1 that the ammonium ion is rotating almost freely in the initial state in both orthorhombic and cubic NH, ClO,. Apropos of this assumption, the neutron diffraction experiments of Levy and Peterson, 23 the infrared spectra ²³ H. A. Levy and S. W. Peterson, J. Chem. Phys., 21, 366 (1953); J. Am. Chem. Soc., 75, 1536-1542 (1953). studies of Plumb and Hornig, 24 and the Raman spectra studies of Couture- 24 R. C. Plumb and D. F. Hornig, J. Chem. Phys., 21, 366-367 and 1113 (1953). Mathieu and Mathieu²⁵ provide evidence that one-dimensional rotation of 25 Le Couture-Mathieu and J. P. Mathieu, J. Chem. Phys., 19, 226 (1952). the NH₁ ion is possible in the amonium halides (i.e., ND₁Rr, ND₁I, NH₁I) possessing the NaCl-type structure. Moreover, the neutron diffraction experiments²³ provide evidence for appreciable rotatory oscillation of the NH₁ ion in ND₁Rr. The fact that ClO₁ is larger than either the Br or I ion makes nearly free rotation of NH₁ ion in crystalline NH₁ClO₁ a distinct possibility. The attainment of the activated complex for decomposition probably also involves a translational motion of the GlO_{11}^n ion. In a namer analogous to that used for the escape velocity during sublimation, 6_97 the activated state translational motion of the GlO_{11}^n ion is divided into three components. The partition function for one of these components is included in the kT/h factor of the Syring formulation of transition state theory. The other two components are assumed to be normal-state translational lattice vibrations. It is further assumed that the translational lattice vibrations of the HH_{11}^{+} ion remain unaltered during the formation of the activated state. It is now possible to write an absolute rate expression for the preexponential linear decomposition rate factor of intermosaic orthorhombic NH_LClO_L, identical in form to that used for sublimation of a non-linear molecule, namely $$B_{0 \text{ NH}_{L}CLO_{L}} = \left(\frac{N}{2^{3} \text{ R}}\right)^{1/3} \frac{kr}{h} \frac{\pi^{-1/2} \left(8\pi^{2} \text{ Rer}\right)^{3/2}}{\left[1 - \exp(-\theta/r)\right]^{-1/2}}$$ cm sec⁻¹ (48) orthornombic Insertion of the above memerical constants into equation (18) yields $$B_0 \text{ NH}_{\underline{l_i}}\text{ClO}_{\underline{l_i}} \text{ (orthorhombic)} = l_i \times 10^7$$ om sec⁻¹ (49) Theory in reasonable agreement with the experimentally derived value of 1.5 $\times 10^8$ cm sec⁻¹. A theoretical calculation of the activation energy for the linear decomposition of intermosaic orthorhombic NH₁CLO₁ is not possible on the basis of present knowledge. #### AddrondLedgment The authors are indebted to Mr. Richard D. Geckler and Dr. S. C. Burket of this laboratory, and to Professor S. S. Penner of the California Institute of Technology for valuable criticism in connection with an early version of this paper. Sylvia Davison assisted in the calculations. #### Bibliographical Control Sheet 1. Originating agency and monitoring agency: O.A.: Aerojet-General Corporation, Azusa, California M.A.: Western Division, Office of Scientific Research 2. Originating agency and monitoring agency report number: O.A.: AGC TN-9 M.A.: OSR-TN-55-11/2 3. Title and classification of title: TRANSITION—STATE THEORY OF THE LINEAR RATE OF DECOMPOSITION OF AMMONIUM PERCHLORATE (UNCLASSIFIED) lie Personal authors: R. D. Schultz and A. O. Dekker 5. Date of report: July 1955 6. Pages: 31 7. Illustrative material: 4 figures 8. Prepared for Contract No.: AF18(600)-1026 9. Prepared for Project No.: OSR R-351-50-7 10. Security classifications: UNCLASSIFIED 11. Distribution limitations: None 12. Abstracts The experimental data of Bircumshaw and Newman are analyzed in terms of a linear rate of progression of the interface between residue and undecomposed crystal. Linear decomposition rates corresponding to given temperatures are derived directly from the maximum rate portions of the signoid curves of product pressure versus time. It is proposed that in the temperature range 220°C to 280°C, the decomposition interface travels exclusively through the disordered material between the mosaic blocks of the crystal and does not penetrate the interior of these blocks. Absolute rate treatments in the manner of Laidler, Glasstone, and Eyring are presented for each of the two crystal forms (orthorhombic and cubic). These treatments are similar to those proposed for the sublimation of ionic solids and the vaporisation of solid ammonium chloride, respectively. Rate of Linear Progression of Decomposition Interface in Ammonium Perchlorate as a Function of Temperature T #### DISTRIBUTION LIST | | No. of Copies | |---|---------------| | Commander | 2 | | Air Research and Development Command P. O. Box 1395 | | | Baltimore 3, Maryland | | | Attn: Chemistry Division - RDTRRC | | | Chief, Document Service Center | 5 | | Armed Services Tech. Info. Agency | | | Knott Building | | | Dayton 2, Ohio | • | | Commander | 1 | | Air Research and Development Command | | | P. O. Box 1395 | • | | Baltimore 3, Maryland | | | Attn: RDTRRO | | | Commander | 1 | | Wright Air Development Center | , - | | Wright-Patterson Air Force Base, Ohio | | | Attn: Chemistry Research Branch | | | WCRRC | | | Chief of Naval Research | 1 | | Washington 25, D. C. | * | | Attn: Chemistry Branch | | | Commander | • | | Wright Air Development Center | 1 | | Wright-Patterson Air Force Base, Chio | | | Attn: Materials Laboratory | | | WCRT | | | Chief, Western Division | • | | Air Research and Development Command | 1 | | Office of Scientific Research | • | | P. 0. Box 2035 | | | Pasadena, California | | | Dep. Chief of Plans and Research | • | | Research and Development Division | 1 | | Department of the Army | | | Vashington 25, D. C. | | | AAA. D. II D. D. I | | #### DISTRIBUTION LIST (cont.) | | No. of Copies | |---|---------------| | Office of Naval Research (London) | 1 | | Navy No. 100, Fleet Post Office
New York, New York | | | Office of Ordnance Research Box CM, Duke Station | 1 | | Durham, North Carolina | - | | Attn: Chemistry Branch | | | N.A.C.A. | | | Lewis Flight Propulsion Laboratory | 1 | | Cleveland, Ohio
Attn: Chemistry | | | Dean Henry Eyring | _ | | Graduate School | 1 | | University of Utah
Salt Lake City, Utah | | | Dr. Alvin Gordon | _ | | Michelson Laboratory | 1 | | NOTS, Inyokern
China Lake, California | | | Professor H. Austin Taylor | | | Chemistry Department | 1 | | New York University
University Heights | | | Bronx, New York | | | European Office, ARDC | _ | | C/O HQ United States Air Force | 1 | | APO 633, c/o Postmaster
New York, New York | | | MARK: "Hold for Pickup" | • | | Officer_In_Charge | • | | Office of Naval Research Branch Office | 1 | | 1030 East Green Street Pasadena 1, California | | | Central Intelligence Agency | • | | 243) E. Street, N.W. | 1 | | Washington 25, D. C. | | #### DISTRIBUTION LIST (cont.) | | No. of Copies | |---|---------------| | N.A.C.A. Headquarters
1724 F. Street, N.W.
Washington, D. C. | 1 | | National Science Foundation
2144 California Street, N.W.
Washington 25, D. C. | 1 | | Attn: Chemistry | • | | Dr. Saul Gordon
Pyrotechnics Chemical Research Laboratory
Picatinny Arsenal
Dover, New Jersey | 1 | | Dr. John B. Fenn Technical Director, Project SQUID Forrestal Research Center Princeton University Princeton, New Jersey | 1 | | Professor S. S. Penner
California Institute of Technology
Pasadena, California | 1 | | Mrs. L. C. Flaherty Secretary, Chemical Kinetics Project Forrestal Research Laboratory Princeton University Princeton, New Jersey | 1 | | Dr. P. A. van der Meulen
Chemistry Department
Rutgers University
New Brunswick, New Jersey | 1 | | Dr. A. G. Keenan
Illinois Institute of Technology
Chicago 16, Illinois | 1 | | Dr. James E. LaValle
Technical Operations, Inc.
6 Schouler Court
Arlington 74, Massachusetts | 1 | | Prof. Roberto Piontelli Polytechnic Inst. of Milan Milan, Italy | 1 | #### DISTRIBUTION LIST (cont.) #### No. of Copies Dr. R. C. Anderson Department of Chemistry University of Texas Austin 12, Texas Professor F. C. Tompkins Imperial College of Science of Technology South Kensington London S.W. 7, England Professor L. L. Bircumshaw University of Birmingham Birmingham, England Professor R. S. Bradley Department of Inorganic and Physical Chemistry University of Leeds Leeds, England Professor W. E. Garner University of Bristol Bristol, England Dr. Gordon K. Adams Explosives Research and Development Establishment British Ministry of Supply Waltham Abbey Essex, England 1 VIA: Chief, European Office, Air Research and Development Command, U. S. Air Force, Shell Bldg., 60 Rue Ravenstein, Brussels, Belgium